New products, Conferences, Books, Papers, Internet of Things

Contiki-ipv6-rpl-cooja-simulationContiki gets regression test framework from Thingsquare Mist with travis integration that lets us test every new commit on 9 hardware platforms, 4 processor architectures, and 1021 emulated network nodes.

Despite its size, Contiki a complex system with multiple layers of interrupts, processes, protothreads, serial port input and output functions, radio device drivers, power-saving duty cycling mechanisms, medium access control protocols, multiple network stacks, fragmentation techniques, self-healing network routing protocols, best-effort and reliable communication abstractions, and Internet application protocols. These run on a wide range of different microprocessor architectures, hardware devices, and is compiled with a variety of C compilers.

Typical Contiki systems also have extreme memory constraints and form large, unreliable wireless networks. How can we ensure that Contiki, with all these challenges, does what it is supposed to do?

Over the years, open source projects have tried different ways to ensure that the code always is stable across multiple platforms. A common approach has been to ask people to test the code on their own favorite hardware in good time before a release. This was the approach that Contiki took a few years ago. But the problem was that it is really hard to get good test coverage, particularly for systems that are inherently networked. Most testers won’t have access to large numbers of nodes and even if they have, tests are difficult to set up because of the size of networks that are needed for testing. Also, since people are more motivated to run tests near a release, there may potentially be large numbers of bugs that are found right before the release. It would be great to be able to find those bugs much earlier.

Many projects do nightly builds to ensure that the source code is kept sane. This is something we have done for a long time in Contiki: the code has been compiled with 5 different C compilers for 12 platforms. But this is not enough to catch problems with code correctness, as the functionality of the system is not tested. Testing the functionality is much more difficult, since it requires us to actually run the code.

Fortunately, Contiki provides a way to run automated tests in large networks with a fine-grained level of detail: Cooja, the Contiki network simulator. But taking this to a full regression test framework took a bit of work.

First, to make scripted simulation setups easier, Cooja author Fredrik Österlind wrote a test script framework for Cooja. Second, Github contributors Rémy Léone and Ilya Dmitrichenko developed a travis plugin for Contiki. And now Contiki gets a new regression test framework from Thingsquare Mist.

More info here.

Comments on: "Contiki Regression Tests: 9 Hardware Platforms, 4 Processor Achitectures, 1021 Network Nodes" (1)

  1. Manju Prasad said:

    Hi Sir, I am regular visitor of WSN Blog, past month I saw one post regardingOdor sensing sensor network Can I get some more details of this node if any datasheets ….

    Thank You Manju

    ________________________________

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 732 other followers

%d bloggers like this: